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SUMMARY

A method is proposed for the determination of six integration constants

in the problem of two fixed centers, The expressions are also derived for
the spheroidal coordinates of the moving point in terms of power series by

two small parameters,
* Mﬂc

* %*

The solution of the generalized problem of two fixed centers dependent on
six arbitrary constants have been obtained in the works by E, P. Aksenova, E, A,
Grevenikova and V, G, Demina, These arbitrary constants must be found from some
initial data, We shall formulate the problem of determination of arbitrary cons.
tants of integration when rectangular coordinates are given of a mterial point
of which the motion is investigated for two moments of time,

Let us consider the motion of a material point in a gravitational field,
induced by two fixed masses, The force function characterizing this field has

the form
U__ﬂ" e p /i\]
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L
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Te=rg [(1 + i) (o i)+ (1 —is) (s — §)"],
where f is the gravitational constant; M is the mass, equal to the sum of masses
of attracting centers; r is the distance of the moving point from the center of

masses; Py ( _) are the Legendre polynomials; 1 is the imaginary unity; ¢ and
4 are certain real numbers,

As is shown in the work [11, the above expression for the potential U 1is a
good approximation of the real Earth's gravitational potential, provided ¢ and 6
are chosen from the conditions
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where R is the equatorial radius of the Earth, J J§ are the constant factors
in the expansion of the real Earth's potential by Legendre polynomlals,

We shall introduce into tie consideration a fixed rectangular system of coor.
dinates x, y, z with origin at the center of masses, The axiz 2z 1is directed along
the linre linking the fixed attracting centers, The differential equations of motion
ofthe material point in this system of coordinates will be written in the form

dix __oU &y __ oU 4% __oU
aB " ox > de T 9y 'odeT oz 3)

We shall pass in Eqs (3) to new variables by the formulas

x=VEF 0= cosw,
y=V({E+c*) (1 —7*)sinw, (4)
Z:Cs-{-—&q

and to a new independent variable

dt = (24 c*n?) dv. )

Then, as is shown in the work {1}, Eqs, (3), transformed at first in an appropriate
fashion, become integrable in quadratures, These quadratures may be written as
follows:
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The quantities /&, €1, €y, €5, €4, €5 in the expressions (6) — (8) are arbitrary inte.
gration constants, whereupon h 1is the constant of the energy integral, and ¢
is the constant of area integral,

In the furthest we shall limit ourselves to the case of elliptic.type motions
for which the inequalities

h<< 0 2¢,—+ ¢ < 0.

are fulfilled [2]. Instead of constants /, €, € €3 €5, €5 we shall introduce into
the consideration new, often more convenient integration constants, which we shall
denote by analogy with the Kepler elements by aq, e, s, Q, o, M,

The expressions linking the old integration constants with the new ones may
be obtained analogously ta what was done in the work [3]., This is why here we shall
bring forth these expressions in their final form,




The constants h, c1 and ¢2 may be expressed by means of new constants
a, e and s with the aid of the following relations:
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where s=a—(l-_—e?) is a small parameter, The quantity 6 may also be considered

as a small parameter, It is not difficult to see that parameters ¢ and ¢ have
the same order of smallness, '

The conversion of elliptical integrals (6) allows to obtain the expressions

for t:e coordinates £, 7, @ in the form of power series by small parameters €
and
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The relations (11) may be utilized for the elimination of the indevnendent
variable v, As & result of such an eliminarion we shall obtain

e=u-+ Ao, 2sin2v -4 A osin2u+ Ag _osin2 (u —v)+ Az2sin2(u+v)+...,

(13)
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W {s a certain constant function of constants a, ¢, 8, ¢; and ¢;. In the furthest
we shall consider w as a new integration constant, alongside with a, e, s,

In order to compute &, 7, @w for any moment of time, it 1s necessary to obtain
the expression linking the variable v with the time t.

If we compute integral (7) taking into account (10) and (12), after a few
transformations we shall have:
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Here M, is a new arbitrary constant of integration.

If we assume in formulas (10« (16) the small oarameter ¢ to be zero, we

shall obtain the formulas brought out in the work [3]. e=( and o=( simul-
taneously, formquas (10) = (16) pass into Kepler motion formulas and the constants
a, e, s=sini, , v, M, become the standard Kepler elements,

We shall consider the problem of the determination of six constants of inte-
gration , if the rectangular coordinates are known of the noint for two moments of
time, also known,

Let us conrider that for the moments of time t and t, the rectangular coor-
dinates of respectively the points X,. ¥, 2; and X, V. 2, are known, £qs, (4) de-
termine in a unique fashion the spheroidal coordinates % 7 and w, Indeed the first
two Egs. (4) give the longitude

'wzar-:tg%. (17)

From the last £q, (4) we find

(18)

g£liminating from the first two £qs. (4) the longitude w and substituting
according to formula (9), we obtain the equation for the determination of § 1in
the following form:

R g =, (19)
where p=c*(1 —3) 4200z — (x* 4 y* - 27),
g=—c*(z—ca)

It may be shown that for real motions of the elliptic type the inequalities

—1<a<h >0 & BLes Ry, (20)
where Rpol is the Earth's polar radius, are valid,

Then, obviously, £qs. (17) — (10) determine unilaterally the spheroidal
coordinates §, 0 and w,




Consequently, for the moments of time t; and t,, the spheroidal coordina-
tes &, My, @, f, N, @, of the point may be considered as known,

Let us now examine how the constants h, c, and c, may be found, the latter,
determining, according to (9), the shape and the dimensions of the orbit., Let us
now turn to Eqs, (6), (7), linking the constants &, ¢, € with the coordinates ¢,
w, w. 1t is not difficult to see that these equations may be written in the form

d5 .
—_ZFI (Ey My h? Clv c‘:)’

d 2
CA=F,(E . b ¢, o), (21)
{ .
_‘71_;’_ =ch3(=v ’f‘)‘
where

‘ v =209 ®)

Fl(Eg N hv ¢y, 02)=W L4

— 21c2F (%)
F2 (Ev T hv ‘1 C-z)=_{—\m‘—2_ ’ (22)

) PO N—
F3(€| "1)-—(Ez+cz)(1_.,‘z) ’

®() and F(v) being determined by formulas (8),

If &, My, W, are known, the system of differential equations (21) with ini.
tial data

E(t) =8, 1(t)=mn, 'w(tx):wl (23)

do generally determine the constants #, ¢;, ¢;» For the computation of the latter
the following method may be proposed,

Assume that certain values of constants h""), c{"",_c&"” are known to us, We
shall consider the system of differential equations

.3 F =
_‘7;‘=F1 (Ey T h(m)' c({")$ Cg”l))’

%:FZ(E_, 7 A ), (24)
d— m
Sr=d"F(E )
with the initial data
-E(tx):'ep ﬁ(t1)='"m 'Z_Q’(t1)=w1- (25)

Besides, we shall consider that the following correlations

E = E+ alAh + a!.Acz + asAcl =_E + AE,
=7+ B0k~ By + Byey = A, (26)

W= "“’-'}' 1O 80, + 180 = w - Aw,

are valid; here a, @, a3, 3, 33 33 Ty T2» Ts are certain still unkmown functions




of the time t, and A =h—h"™,

Ac,=rc, — ™,

Ac,=c,— e

Assume that at t = t, functions %, %, %, By, B2 B3 T T T3 pecome identically

1
zero, i, e,

n(f)=a(l)=...=7(4)=0. (27)

We shall obtain the differential equations determining the functions @i, G, a, B, B, 7.
7i» Y2 13- To that effect we shall subtract the system (24) from the system (21),
as a result of which we shall have

d .. - T = m m m

—(F(A:):Fl (=’ "l, h1 cla 02)——[:1 (Ey 111 h( )7 c(l )1 6‘5 ))v

7,‘17(-\'0-)=F,(E, n k€ €)= Fy (E, 7, B, ™, ™), (28)
S Bw)=c,FyE, — P F (E, 7).

We shall expand the functions .Fi(k, W, &, ¢}, ¢3), F(§, =, &, ¢;, ¢;) in exponential
Taylor series by variables §, 4, %, €3, &2 in the vicinity of the point {, v, 4™, ™
cgm)); limiting ourselves at the same time only to terms linear relative to

AE, A, ok, B¢y, G,

B b, e Cz)=F1 (5, 7, ™, &™) ™) -LAEP,TI:“+
oF; 0F; (29)
on e an St ae T pae, T
’ VoA OF
FGn i, e, co>=Fz(s, 7 K, o ) a2y
OF, oF: oF ,
an S an G 4 ac G2 e G

The expansion in Taylor series for the function Fj (S, ) in the vicinity of the
point (3 "l) provided we Llimit ourselves to linear terms, has the form

6 m=Fo )+ 21 52 a3 (30)

We shall now substitute expressions (26), (29), (30) into Egs, (28) and equate
the coefficients at identical powers Afh, Ac,, A¢; Then, we shall obtain with a
precision to linear terms, the following differential equations for the determina.
tions of functions a;, @, 9, By, B B5 11, T2, T

l’a‘ - 0F1 ' 0!‘1 [ 0F1

at — Mg T on T on

day. OF, , OF, |, , OF

T =% g gy i

das 0F1 OFI (31)

()F,
dt"”de_*—(h,_r?:’ ’

../..



.. continuation

3 __o OFp L OF, oF,

At T M T un+1 ot

d3y OF; |, 0Fs OF,

i =gyt T

dly __ o OF, , O0F, OF,

at —(38 0_1;—+—051-+a3 gt (31)
dyy __ 4my[  OF, 0Fy

= |n e |

d1s __ (my[ OFs 0F;y
—BT——Cg [a:"(ﬁ“‘{"pz“a,' )

2n =F,(E, vz)-l—c(""[as aes'i‘ﬁa 0F3]

with the initial data (27),
oF aF aF, oF aF ;
The partial derivatives oel [} on‘ ' d’: ' ac;"v ot.' (=1 2 3) standirlg in the
right-hand parts of Eqs. (31), must be computed at the point (E n, h‘”‘) o™ c&"")

Let us bring forth the final expressions for the partial derivatives

oF, 2y2 2 . '
Gt = ey (O )+ 206+
M (5 ) OfME 20 F
COOR __ _2V2 i1y
e e A PAR

O _ VIBELD o
on T T 2(EF cig?) L

9R _YIR LA o,

ge, . 2(- C’*')

A}

o VI

f“/:
o =TEren i
0Fy 2/2 s
=T e I
aFﬂ _— 2 V(:)—Cz'q Y 1/2- ——
So=—mrany 1t @ ey 2 —) (32)

— 2hct® — fMoc (1 — ) -+ 2fMocy? + 2¢m] f2 ™,
0Fy ¢/ 22 (1 — 1Y) £t

oh T T2 (€2 L c2n2)

f_F_;- —_ }/_—(I —12) f—
A T o)

o V2 fit,
deg T Z(E - c2y2)

oF, _ 28

T T I—mE Ty
()F:) 27;

T ETHA—E

OF; _ 0Fy __ OF;
Oh T ez oc, T
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where
re » l 1
fi=h5t = M L ey - cU) B - fMcB - \ 5 ?)

L+
fo=—hy —-—f/‘/l'cc*r1 '-(cr.—l-c‘h) w2 — fMacy, — ( - 7 2)

The solution of the linear system of differential equations (24), (31)
with the initial data (27), (27), may be performed by any numerical method, for
example by that of Runge-Kutta , Consequently, the values of the functions

E@®), n(t), w(®), i (8), (D). ..., 15(8)

for the moment of time t = to, may be computed, Since the values of functions
t(¢), 7(t) and w(f) for the moment of time t =t, are known, by resolving for t=t,
the system of alzebraic equations (26) we shall find the corrections Ak, Ac, Ac,
and consequently also certain new values of "integration constants h, ¢;, €9

A — pt™ 4 ap
(m+1) (m)

- €2 =cy T A4c,,
(mal) __ m) 4y (33)
C =] T AaC;.

Such a calculation process of consecutive approximations may be repeated more
than once to obtain the required precision,

The question of convergence of the approximations (33) has not heretofore
been investigated theoretically, On the basis of certain preliminary numerical
computations it is possible to assert, however, that the approximation process is
converging only if the initial approximations of constants A© ¢{¥ {7 are taken
within a sufficiently small neighborhood of the true values of h, Cy s C

The initial approximations of constants 4'®, ¢, ¢ for small time intervals

may also be found, We shall indicate the way this can be done,

©,

It is easy to see from Eqs., 6) and (7), that the equality

s
dt
— qy, = . 34
W, uq__c,f T e (34)
fy

is valid fgr the moments of time t and t,. In order to find the zero approxi.
mation c we shall compute a svecific integra 1, standing in the right.hand part
of (34), according to the =raneze formula

/{_t_____ﬂ__A,A_ t2 e t! r : + + 1 .
S EUET [N e T s B (IRl

&

Then ¢{® 1is found according to formula:

. . -1
Z‘(o)= 2wy — W) r - e ] ‘)1 ] ] ) (35)
' J
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For the determination of the zero approximation of constants ¢ and ) we
shall consider that
b= () [t,— 4],
.'I-z—.’;l’:_dzt'—(tl) {ta—4],
and the first two Eqs, (21) will be rewritten in the form
b 2’/222 X 1/ KL M 1 D+ H G e (P + 1), G6)
Ll i1 ¢y
B X1,/ =ttt -+ fMacni + (e + ) gi—f Mocn, — (‘°’+ 7d”).
2= 4 51+"*u
Eqs (36) allow the finding of h(o), ¢y, provided only 0(0) was already found:
: : z
h(o)__ Ef+cz'lf ) (52—51)2 : (m—"ll)’ -2 fM(El—N'h) +_1_ c‘lb) 5 'i )37)
-2 ta—t2(H+e)  (a—tp(—m) |7 T @y 2 (g4+e)(1—m)

B il ) 1 e
= 2(ty — 1) ("+c’-) 2 (Ef_*_cz) *

After the constants h, ¢, 0 have been found, it is nossible to compute
the new constants a, e, s by utilizing £qs, (9)., The latter will have to be
resolved by some approximate method. However, for the determination of constant
quantities a, e, s it is more practical to apply another method, Indeed, when
obtaining Eqs, (9) we considered [3]. that the multiple term ©(;) has in the
general case two real roots, which we shall denote by a (1 + e) and a)l —e),
Neither is it difficult to show that the multiple term /() has in the reglon
(20) of variable 7 variation two real roots, one of which is denoted by s.

This is why, having determined the real roots of the multiole terms @ (%) and F(y),
and the corresponding regions (20) of variables § and 7n variation, we shall

be able to determine a, e, S, However, it still remains unclear which of the

two real roots corresponding to region (20) ought to be taken for s, This duality
of the solution of the constant s will be eliminated in the furthest, when the
remaining constants £, ® and MO are found, The calculation of the latter offers
no particular difficulties.

— KO8 — M, —

Let us take for s either of the real roots of the multiple term - F ().
Now, knowing a, e, s, we shall comoute all the coefficlents determinable by
formulas (12), Since the quantities " " &, § . are well known, we may deter.
mine with the aid of the first two Eqs, (l0) the values ¥, ¢, V] and vy « Then,
resolving Eqs(13), for example, by the aoosroximate Newton method [4| for the
moments of time t; and tj , we shall find the quantities u; and uj, Then
Eq. (14) will give us the value of the constant o, If s was chosen correctly,
it is evident that the constant w, fournd from £q, (14) for the moments of time
t; and tp, will be one and the same within the orecision of calculations,
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In the opposite case, one should take for the constant s the other root
of the term F (1) from region (20) and recompute the quantities P 9?2 V), U, &, U,
and the constant ® The constant Q corresponding te the longitude of the node
in the Keplerian motion, will be found without difficulty from the last equality
(10).

Finally, Eq.(lS), linking the independent variable t with the variable v,
allows the finding of the last constant Mg,

Thus, all the six constants of integration a,e,s Q o, M;are determined,
and, moreover, they are determined {n a unique fashion,

In conclusion I wish to express my sincere gratitude to P, Ya, Lyakh for
his careful attention to my work and for his valuable comments,
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